Polar Ozone Loss in a Changing Climate
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SUMMARY COMPARISON OF MEASURED AND MODELED O3& O; LOSS RELATED MICROPHYSICAL DIAGNOSTICS
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Figure 8 (right): Gas-phase HNO, profiles from MLS (left) and SD-WACCM (right)
on 1/23 (top) and 3/10 (middle), and 3/10 minus 1/23 (bottom).

Too much uptake of gas-phase HNO; in SD-WACCM is consistent with too little
CIONO, (see Fig. 6). Reasonable O; loss then suggests that PSC particle size
distribution is shifted towards bigger radii (more uptake, same surface area).
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agreement with previous work, providing an initial verification that
SD-WACCM is appropriate for these types of studies. Diagnostic
comparisons to observations of ozone-related species point to
minor deficiencies in SD-WACCM simulations of descent and/or
mixing, as well as halogen-induced O5 depletion.
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Figure 3: Spatial distribution of inferred O; loss at 450K in 10day intervals
throughout the season (same color bar as Fig. 2) with a green 1.6-10%s! sPV
contour. Largest O, loss of 2ppmv occurs at the end of the season.

METHOD
 Three model simulations:
- full-ozone chemistry
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Table 1: Comparison of shown O, loss results (last column) with previous research.

- gas-phase-ozone Chemistry only (pseudo-passive tracer) Potential Temperature [Manney et al. [2006] Jin et al. [2006] Rex et al. [2006] Rosevall et al. [2008] Singleton et al. [2007] MLS/WACCM pared to SD-WACCM
] 60

- - 400K 0.8 ppmv 1603 ppmv 0.7 ppmv 1.4 ppmv 0.6 ppmv > (bottom row) at 490K.
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COMPARISON OF MEASURED AND MODELED N,O
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However, no clear distinction between differences In
1descent and mixing across the vortex edge can be
made.

1Figure 10: Oj profiles
1from MLS (left) and SD-
TWACCM (right) on 1/23
1(top) and 3/10 (middle),
and 3/10 minus 1/23

Figure 5 (below): Spatial distribution of N,O (1St row
MLS, 2" row SD-WACCM) at 490K for one day
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Figure 1: Evolution of observed each month throughout the season with a 1.6-10s™ 5 70 ](bottom). Polar vortex
ozone (black), modeled ozone sPV line contour. The final warming happened gsoo {edge as 1.6-10%s1 sPV
(blue), modeled pseudo-passive ~3/10 [Manney et al., 2006]. Diiferences between 5 288 1line contours. Biggest
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« EOS MLS on Aura (since August 2004), version 2.2 S 032253;3:4[44]9- q o e N

 SD-WACCM (nudged daily with GEOS* U, V, T), version 3548
*Goddard Earth Observing System, reanalysis, version 5

INITIALIZATION

Global O3, nitrous oxide (N,O), nitric acid (HNO,), hydrogen
chloride (HCI), and water vapor (H,O) initialized with MLS data

* On 1 Dec: before first O, loss occurs
* MLS data interpolated to SD-WACCM grid
* Interpolation done on SD-WACCM pressure levels
* Delaunay-Triangulation
» Equal-area smoothing
« Cannot treat diurnal variations (e.g. chlorine monoxide (ClO))
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Figure 6: Evolution of observed (top row) HCI (left), CIONO, (middle), their sum
(right) and SD-WACCM respectively (bottom row) inside the polar vortex (sPV >
1.6-104s1). Cl in reservoir species from SD-WACCM compares well with observa-
tions, suggesting the correct partitioning of chlorine between reactive forms and
reservoirs.
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Figure 11: Same as Iin
Fig. 10, but for N,O.
SD-WACCM and MLS
compare well, but SD-
WACCM shows larger
Increase near and In-
side the vortex edge

! below 700K. This could
] indicate too
1 scent and/or too much
1 mixing.
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* SD-WACCM is valid for inferring O, loss from observations

* More accurate simulation of O; loss in WACCM requires further
iInvestigation of chlorine partitioning and PSC particle sizes

* Equivalent analysis for Antarctic winter needed to better
iInvestigate mixing and descent

» Future plans include O, loss calculations for all Arctic and
Antarctic winters since 2004




